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1. Introduction

In their recommendations for future extensions of Item Response Theory

(IRT; see, e.g., Lord, 1980), Traub and Wolfe (1981) suggest that a

"way of improving the linkage of achievement measurement and

instruction is to obtain detailed data about the distribution (by student,

class, school) of instruction and incorporate that information into the

response model. We are thinking here of the so-called 'opportunity-to-

learn' measures used in the IEA surveys and the exposure measures

used, for example, by Fischer (1972)" (pp. 422-423). This paper

represents an attempt in that direction.

Recently, one can observe an increasing concem about the match between

the school curriculum and what is being tested by standardized

achievement tests. See for it stance Airasian and Madaus (1983),

Haertle and Calfee (1983), Mehrens and Phillips (1986), Miller (1986).

An interesting development is the use of "opportunity-to-learn" measures

(Alderson, 1985), see e.g. Miller and Linn (1986) and Engelhard

(1986).

This paper discusses methodological implications of utilizing

instructional information in combination with the usual item responses.

Models that expand those of standard Item Response Theory (IRT) will

be considered. As an illustration, we will consider the achievemBnt

data of



the U.S. sample of the Second International Mathematics Study (SIMS),

Crosswhite, Dossey, Swafford, McKnight, and Cooney (1985). In SIMS,

opportunity-to-learn (OTL) response was gathered for both teachers and

students corresponding to each item. Their response concerned whether

or not the mathematics needed was covered during the present school

year, and if not, whether it had been covered in prior years.

When analyzing achievement data from students with varying

instructional background, the modeling should recognize that a

heterogeneous population is at hand. Three methodological issues are of

particular interest:

(1) How should the modeling capture the fact that the measurement

relationship between the items and the latent trait may vary over

students ?

(2) How should trait dimensionality be assessed ?

(3) How should the latent trait values be estimated ?

In IRT analyses of standardized achievement tests, it is assumed that

instruction increases the item performance through an increase in the

latent trait level, while the item-trait relationship remains the same;

hence, no "item bias". This may be too strong an assumption when the

instruction
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is geared towards certain types of items in the test. IF the assumption

is incorrect and biased items are not removed , biased latent trait

estimates are obtained. Furthermore, the factorial structure may not

be the same for a group with high coverage as for a group with low

coverage; indeed, with very low coverage, the validity of the item is

called in question.

In this paper we will concentrate of the first question. It will be

formulated as a problem of assessing "item bias", or instructional

sensitivity in the items , 'vher. item specific OTL type information is

available. In section 2 approaches that use traditional IRT methodology

to assess measurement differences will be considered. He-e, groups of

students are formed based on OTL score and differences in item

characteristic curves are assessed after equating one group's

measurement parameters to the other group's. Section 3 demonstrates

the weakness of this item bias approach by means of an artificial data

analysis. In section 4 a new method is proposed which does not

necessitate the creation of groups to assess item bias and avoids the

problem of the standard item bias detection approach. This method

generalizes IRT modeling to allow for item specific variation in

measurement relation:, across students with varying instructional

background (OTL). Item bias detection is obtained as a by-product.

Section 5 applies the traditional and the new methods to the SIMS data

and compares the outcomes in terms of item response curve bias.



--....11

2. Traditional item b'as detection

With the availability of auxiliary information such as OTL, a

conventional item bias type analysis is naturally of interest. Groups

are formed based on some criterion related to OTL. IRT estimation is

carried out in each group, the parameter estimates are made

comparable by some form of equating, and some form of item bias

index is calculated for each item (see e.g., Linn, Levine, Hastings, and

Wardrop, 1981). In the present situation, however, it should be

recognized that the auxiliary information of OTL is item specific.

Whereas race or gender information puts a person in a group which is

constant over the items, the OTL "group membership" varies with item.

The problem is then how groups should be formed--or should they?

One approach to overcome the item specific nature of the OTL measure

is to put in the same group students with the same OTL value ("Yes",

"No", or graded in some way) for all items in some subset of the whole

test and to study item response curve differences for this subset. Even

with a very small number of items, however, this is likely to lead to

groups with small sample sizes, jeopardizing the reliability of the IRT

estimation. The analysis would also ignore a large portion of the total

sample available.

Miller and Linn (1986) used an interesting alternative in analyzing

SIMS data. Teacher reported OTL measures for each item were first

7
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factor analyzed, and groups of students were then formed by cluster

analysis based on the corresponding factor scores. The factors

corresponded to groupings of items by content, such as the two for

algebra: (1) formula, algebraic expressions, equalities and

inequalities, an' (2) signed number equations. This gave "curriculum

clusters" that were well separated with respect to mean values of the

factor variables. On comparison between item response curves for the

same item across student groups, they found several items with

considerable differences, i.e. evidence of "instructional bias" (see Linn

& Harnisch, 1981). Miller and Linn (1986) noted that the magnitude of

the biases were frequently larger than commonly eoncountered when

considering student groups formed by ethnicity.

This approach has considerable merit and gave revealing results in

terms of item response curve differences across clusters. It has,

however, the drawback of basing the estimation of an item's parameters

in a certain group (cluster) on students that may well save a wide range

of OTL factor. values. The approach also has the disadvantage that a

student in any given group, who has a certain OTL status for an item,

tends to have the same OTL status for several other items. To solve

this item, the student may then be at an added advantage or disadvantage

due to presence or absence of training in related topics.

There is, however, a general problem with item bias detection methods

of the above type that woula seem to make them inappropriate for

-6-
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situations of varying instructional coverage. As we will demonstrate in

the next section, this is because such situations may often be

characterized as involving groups for which many or most of the items

may be biased.

3. The problem of traditional item bias detection

In this section an IRT model with hypothetical population values will be

described. A traditional item bias detection scheme will be applied to

this hypothetical model.

Consider the situation of a set of p items y that measure a single latent

trait ri. Assume that a two parameter normal ogive model holds for the

items (cf. Lord, 1980),

(1) P (yi = 1 I Ti) = ) [ aj (r) bj) ] ; j =1, 2, ...p

where ft is the standard normal distribution function, and a and b are the

usual discrimination and difficulty parameters. Conditional

independence is assumed as usual.

The model above will be used to illustrate the problem of ordinary IRT

bias detection in situations where the groups to be compared have

different levels of instructional coverage or opportunity-to-learn.

Consider for simplicity two groups, group one having latent trait mean

-7- 9



0 and variance 1, and group 2 having mean I and variance 0.5. This

may represent the situation of group 2 having had more OTL for the set

of items at hand than group 1, so that students of this group both have a

higher trait level and are more homogeneous with respect to this trait.

The two groups will be referred to as the low and the high OTL group.

Consider 40 items and five different situations of varying degree of

bias.

(1) Zero bias. None of the items are biased, i.e. for each item the

same measurement parameters a, b hold in both groups. The item

parameters vary over items as follows for item I 10 (a, b):

item I and 2: 0.98, -2.86; item 3 and 4: 0.98, -1.43; item 5 and 6:

0.98, 0.00; item 7 and 8: 0.98, 1.43; item 9 and 10: 0.98, 2.86.

These same parameter values are used for each of four sets of ten

items in the total set of 40 items.

(2) 25 % bias. One of four sets of ten items shows bias, while the

other three do not. For the ten biased items, the low OTL group is

viewed as nct having had sufficient instructional coverage in that the

difficulty of each of the 10 items is perceived as higher than for the

high OTL group. For the remaining three sets of ten items, the groups

of students do not differ in OTL. This is captured by different b values

for the two groups, while the a values remain equal. The group 1 (low

OTL) b values are increased by 1.14 yielding the b values:



item 1 and 2: -1.72; item 3 and 4: -.29; item 5 and 6: 1.14; item 7

and 8: 2.57; item 9 and 10: 4.00;

(3) 50 % bias, Here, a situation similar to that of 25 % bias is

considered, but twenty of the items are biased. The bias is the same as

for 25 % bias except that it is applied to two sets of ten items.

(4) 75 % bias. As above, but with three sets of ten biased items.

(5) 100 % bias As above, but with all four sets of ten items being

biased.

Using the hypothetical measurement parameter values above, we may

study the application of a common item bias detection scheme. The

first step involves expressing the item parameters, using the a, b

parameterization, in a metric that corresponds to a latent trait mean

and variance of 0 and 1. This metric corresponds to the one obtained

for estimates obtained by standard 1RT analyses. While the parameters

for the low OTL group 1 then remain unchanged, the high OTL group 2

values need to be scaled.

The second step involves item response curve bias calculation, for

instance in the simple way described in e.g. Linn et al (1981); see also

Lord (1980). The mean and variance of the difficulty values are used

to equate group 2



measurement parameter values to group 1 values. The item bias for

each item is then expressed simply as the square root of the sum of

squared differences between the item response curves of (1), summing

at steps of 0.1 from 3 to 3 (see Linn et al, 1981). Note that we may

also calculate the true bias value for each item. This is obtained by

calculating the value based on the original a and b value for each item.

Linn et al (1981) describe a response curve bias value of 0.2 or larger

as possibly of practical importance.

Table 1 gives the results for the hypothetical bias cases of 25 % 100 %

bias. The case of no bias would simply show that the true and

calculated bias values are zero for all items.

Insert Table 1 here

We note that for the cases of 25, 50 and 75 %, the difference between

calculated and true bias increases with increasing bias proportion.

While for 25 %, the calculated bias values are rather close to the true

ones, large errors are observed for 50 % and 75 %. In all cases the

cal,-Jlated bias values seem to indicate bias where there is none, and

underestimate bias where it exists. This reflects the fact that the

detection technique operates under the assumption that no items are

biased and works reasonably well only when a small proportion J items

1 2-10-



deviate from this assumption. The fact that the technique makes bias

decisions relative to the average item is clearly shown in the case of

100 % bias, where no bias is found. The fact that all items are biased

is mistaken by this technique as an indication of a group difference in

`--,'t distribution.

We conclude that with strong differences in OTL between students it is

qui;..e possible that many or most items are biased, in which case the

traditional detection technique is inappropriate.

41. A new IRT extension incorporating OTL

We will present a solution that avoids the problems of the

traditional item bias detection scheme, Compared to such schemes, the

ne,v approach will avoid the difficulty of forming groups prior to IRT

estimation and will also avoid the need for the equating step. This is

achieved by allowing the difficulty parameter for each item to vary with

the OTL level. In this way, item specific variation in "group

membership" is allowed for and the population heterogeneity is taken

into account in the mode: specification.

Assume the availability of OTL information for each of a sat of p

items
y

- Let the OTL variable connected with item j be denoted x .
..1*

Let y be a p-vector of continuous latent response variables, such that

for item j



*
(2) . = 0, if y r .

yJ J
1, otherwise

*
where r

J J
is a threshold parameter defined on y ..

For the p- vectors y* and x, assume

(3) y*=Xn+Bx+e,

(4) r; = y' x + ,

yielding

*
(5) y = (A y' +B) x + A + E,

where X is a p vector of measurement slopes, ri is the latent trait, B

is a diagonal p x p matrix of slopes reflecting -he strength of influence
*

of each x on the level of the corresponding y , c is a p vector of

measurement errors with 70ro expectation , y is a p vector of

structural slopes describing the influence of the x's on the trait, and

is a residual with zero expectation. It is assumed that y* conditional

on x has a multivariate normal distribution. Assume further that E and

are independent of each other and of x, and that E is also independent

of ri.

-12-14



Let V (') = 4/ and V () = 8, where 8 is diagonal. Due to normality it

suffices to consider

*
(6) E (y I x) = (X y' x + B) x ,

*
(7) V (y I x) = X tp X' + 8 ,

where we may standardize to unit conditional y* variances, yielding
2

diagonal 8 elements 6j = 1 X ty . Equations (6) and (7) describe

the structure that the model imposes on t'-le multivariate regression of
*

y on x. Since the y's are dichotomous, the model may be termed a

multivariate structural probit model. The model imposes restrictions

on the p x p slopes and on the p(p-1)/2 residual correlations of an

"unrestricted" multivariate probit regression model.

Note that

(8) E (y*j I ri, x) = Xj 'I + Oj xj '

(9) V (y* I n, x) = 0i ij '

so that by standard results on conditional means and variances,

*
(10) E (y I ri) = XJ. li+ p. E (xJ .) .,i J



2
(11) V (y*.

J
I 71; = e .. + g.

J
v (x.J ) .

JJ

If A .

J
is normal, the distribution of y conditional on r? is normal and

-I

we have

(12) P (y
J

=1 I /1) = cl) { [-r
J

+ E (y*
J

I 0) ] [ V (y
*
j

I ri) ] -4}

so that the standard normal ogive IRT parameters are obtained as

2
( 1 3 ) a . = N

J
. [ e + g . v (x

J
) ] -i

J JJ J

..1
(14) b.

3
= [ r

j
-13.

J
E (x ) ] X .

First note that for
gi.'s = 0, or no OTL x's present, this is the standard

two-parameter normal ogive IRT model. With OTL x's present, each 13;
J

is presumably positive. In standard IRT, incorrectly ignoring the OTL

information (or assuming f3i = 0), (13) and (14) show that we obtain

non-invariance of the standard item parameters when a certain set of

items is administered to populations with varying OTL distribution;

poptilations with larger OTL variance and higher OTL mean tend

4..., ha,/e lower item discrimination and lower item difficulty,

respectively, The present extended IRT model avoids such problems by

incorporating this item non-invariance directly into the model. Note

that the measurement parameters of r and A may still be invariant.

1 6
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If x.
J J

is not normal, P (y. =1 1 r)) is no longer a normal ogive, although

it does represent a monotonically increasing curve. We shall be

particularly interested in cases where x
J

. is dichotomous, denoting

presence or absence of sufficient OTL according to some subjective

criterion. In such cases, it is useful to consider the normal ogives at

the two different x;. values 1 and 0. Using (8) and (9), we then have
.)

J
(15) a. = x. ej. 4

,
J J

i

J
(16) b. = (r . 13. x.) X.

J JJ J

From (8) and (16) we note that the /3. difference in conditional y .

J J
mean at x.

J
= 1 versus x.

J
= 0 may alternatively be seen as a difference

in item difficulty; item j is perceived in two different versions, with

and without OTL.

We will show that this model formulation is a special case of a general

structural model proposed by Muthen (1984). This general model

extends traditional structural equation modeling with continuous

variables to situations with categorical and other non-normal

measurements, such as the dichotomous ones here. A simplified

version of Muthen's general model assumes (using notation similar to

that of (2) and (3))

*(17) y =A n +E ,.



(18) r.g = Bg n + x + ,
-ag g g

yielding

(19) E (y I x) = A (I B ) r x ,
g g g

(20) V (y I x) = A
g

(I B
g

) 4g (I B
g
)' A

g
+ eg .

Here, the subscript g is used to denote quantities corresponding to the

general model of Muthen (1984) as opposed to the specific model

prop sed above. Where quantities are the same, the subscript has been

omitted.

To see that the proposed model fits into the general framework, let rig'

= (y rj) , ( ', and let

(21) y = A
g

(22) CI = B
g g

+ I-
g

x + C
g

,

with

(23) A = [ I 0p x p 0],

(24) eg = Op ,

-16- 18



(25) B
g

= pxp A

0' 0

(26)' 1r i14. /
g

= .
B

9 J
Y

,

(27) 41

g 0
= Ee .

*

We may note that since the y variables are dichotomous, the diagonal
*

elements of V (y I x) may again be standardized tc unity. This means

that only the off-diagonal elements of V (y* I x), and therefore 8, enter

into the analysis and that the diagonal elements of 8 may be fixed to any

value.

For the statistical background of this technique, the reader is referred

to Muthen (1984) . Estimation is carried out by limited information

generalized least squares, and a large sample chi-square test of model

fit as well as standard errors of estimates are provided. Parameters

may be of three kinds: free to be estimated, fixed to a certain value,

and constrained to be equal to other parameters. The analyses to be

presented have been carried by the LISCOMP program, which builds 3n

the theory of Muthen (1984), see Muthen ( 1987).

It may be noted that when needed, the proposed model may be easily

generalized in the model framework of Muthen (1984). For instance,

the B matrix need not have all off-diagonal elements fixed at zero, the

8 matrix need not be diagonal, and there may be more than one ri .



5. Applications

For illustrative purposes, consider now the application of both the

traditinnal bias detection technique and the proposed approach to some

achievement items from the Second International Mathematics Study

(SIMS). We 'will analyze a set of eight ciichotomously scored algebra

core items described in Table 2.

Insert Table 2 here

The sample consists of 4,129 U S. eighth gr-le students (Crosswhite,

Dossey, Swafford, McKnight, and Cooney, 1985).

5.1 Traditional IRT bias detection

Consider first LISCOMP estimation of the standard two-parameter

normal ogive IRT model of section 4 with no x's present, adding the

assumption of P normally distributed trait ri. Similar estimates would

be obtained by standard IRT analysis. LISCOMP gives a large sample

chi-square test cf model fit and allows for violations of the conditional

independence assumption in the form of correlated E residuals. The

standard model of uncorrelated residuals resulted in a chi-square of

61.6 with 20 degrees of freedom. The number of degrees of freedom is
*

the number. of restrictions imposed on the correlations among the y 's



(see e.g. Muthen, 1978). Relaxing the model restrictions somewhat, a

strong improvement in fit was obtained when allowing the residuals for

items 5 and 7 to correlate, resulting in a chi-square of 46.4 with 19

degrees of freedom. Given the large sample size, this is regarded as a

satisfactory fit.

In line with the student grouping approaches discussed in Section 2, this

model was then used for groups based both on OTL and on type of

mathematics class. The OTL measures were obtained from the

teachers, where for each item the teacher responded to the question:

"During this school year did you teach cr review the mathematics needed

to answer the item correctly ?"

The answers were No (scored 0) and Yes (scored 1). A similar

question was directed to the students. There is clearly a question of

reliability of both these reports. The student response may be affected

by the perceived difficulty of the item, and the teacher response

concerns the class as a whole, where a claim of coverage may be

irrelevant for the student who was absent. We have chosen to work with

the teacher response since we feel it may be the least unreliable; the

fact that this measurement is not on the student level is here ignored.

A low and a high OTL group was created by splitting the students based

on the sum of the item OTL scores at s 6 versus higher, resulting in

sample sizes of 2,101 versus 2,028. As an alternative, students were

also divided into two groups based on type of mathematics class.



Remedial and Typical classes were contrasted with Enriched and

Algebra classes, yielding 2,592 versus 1,537 students.

In the low OTL group, the model with 19 degrees of freedom obtained a

chi-square value of 26.6, while in the high OTL group, 47.9 was

obtained. For the "low" class types, the chi-square 30.2 was obtained,

whereas the "high" class types obtained the value 36.5. The estimation

was carried out with trait mean of zero and trait variance one. The

estimated r and A values can be translated to the IRT a and b values by

setting 19 = 0 in (13) and (14). The response curve bias index may then

be computed as usual.

The left-most part of Table 3 ("Traditional") gives the resulting item

bias values for each item given the two ways of dividing students into

groups. These results are given both for the standard model with

uncorrelated residuals (Model I; 20 d.f.) and the model allowing the free

residual correlation (Model II; 19 d.f.).

Insert Table 3 here

We note that the least amount of bias is observed for the first three

items. There seems to be little difference between bias values

calculated from Model I versus Model II, and using the two ways of



creating the student groups.

5.2 Applying the new IRT approach to the SIMS data

Applying the new approach to the SIMS algebra core items, a chi-square

test of model fit gave the value 223.5 with 68 degrees of freedom. The

number of degrees of freedom is obtained as the total number of
*

restrictions imposed on the p x p regression slopes of E (y I x) and the

p(p-1) /2 residual correlations of V (y I x) (see Muthen, 1984) . A

strong improvement in fit was obtained when allowing the residuals for

items 5 and 7 to correlate and a further improvement was obtained

when allowing correlation between the residuals for items 6 and 8.

For simplicity, we chose as our final model the one with only errors 5

and 7 free to correlate, resulting in a chi-square with 208.8 with 67

degrees of freedom. Let this model be denoted Model III. The

estimates from Model III are given in Table 4.

Insert Table 4 here

The most interesting result concerns the estimated fi values on the

diagonal of B representing the effect of each of the OTL variables x on

the corresponding response variable. Note that this is an effect over and

above that of ri, so that we are describing the effect of OTL for given



achievement trait value. For the first four items we have strong

positive effects of OTL while the last four exhibit insignificant OTL

effects.

The estimated /3 values and their standard errors give a succinct way of

assessing item bias, or instructional sensitivity, in each item.

However, for comparison it may be of interest to study the

corresponding item response curve bias values. These may be computed

from the estimated Model III by (15) and (16). The bias values are

given in Table 3 in the Model III column. We note that the results

contradict those for Model I and Model II using the traditional approach

of dividing the students into groups. The difference is particularly

strong for the last four items. The difference is possibly due to the

deficiency of the traditional approach discussed in section 3.

-22-

24



References

Airasian, P.W. & G.F. Madaus (1983). Linking testing and instruction.

Journal of Educational Measurement, 20, 103-118.

Anderson, L.W. (1985). Opportunity to learn. In Husen, T. &

Postlethwaite, T.N. (eds.). The International Encyclopedia of

Education, Oxford:Pergamon Press.

Crosswhite, F.J., Dossey, J.A., Swafford, J.0., McKnight, C.C., &

Cooney, T.J. (1985). Second International Mathematics Study

Summary Report for the United States. Champaign, Ill.: Stipes.

Engelhard, G. (1986). Curriculum-based estimates of student

achievement. Paper presented at the annual meeting of the

Psychometric Society in Toronto, Canada.

Haertel, E. & Calfee, R. (1983). School achievement: Thinking about

what to test. Journal of Educational Measurement, 2C, 119-132.

Linn, R.L. & Harnisch, D.L. (1981). Interactions between item content

and group membership. Journal of Educational Measurement, 18,

109-118.

Linn, R.L., Levine, M.V., Hastings, C.N., & Wardrop, J.L. (1981).



Item bias in a test of reading cc-nprehension. Applied Psychological

MeaF'irement, 5, 159-173.

Lord, F.M. (1980). Applications of Item Response Theory to Practical

Testing Problems. Hillsdale, N.J.: Erlbaum.

Mehrens, W.A.. & S.E. Phillips (1986). Detecting impacts of

curricular differences in achievement test data. Journal of

Educational Measurement, 23, 185-196.

Miller, M.D. (1986). Time allocation and patterns of item response.

Jour.-11 of Educational Measurement, 23, 147-156.

Miller, M.D. & R.L. Linn (1986). Invariance of item parameters with

variations in instructional coverage. Accepted fo. publication in the

Journal of Educational Measurement.

Muthen, B. (1978). Contributions to factor analysis of dichotomous

variables. Psychometrika, 43, 551-560.

Muthen, B. (1984). A general structural equation model with

dichotomous, ordered categorical, and continuous latent variable

indicator ;. Psychometrika, 49, 115-132.

Muthen, B. (1987). LISCOMP. Analysis of Linear Structural



Equations with a Comprehensive Measurement Model. Users' Guide.

Scientific Software, Inc. Mooresville, Ind.

Traub, R.E. & Wolfe, R.G. (1981). Latent trait theories and the

assessment of education achievement. In D.C. Berliner (Ed.),

Review _ research in education.



TABLE 1

Item Bias in Artificial Data

(Entries are the square root of the sum of squared response curve difference)

25% Bias 50% Bias

Biased Set (10 items)
Calculated

Item Bias
True
Bias Difference

1,2 .32 .39 -.07
3,4 .35 .45 -.10
5,6 .34 .45 -.11
7,8 .29 .41 -.12
9,10 .18 .27 -.10

Average: .30 .39 -.09

Unbiased Sets (3 x 10 items)

1,2 .07 .00 .07

3,4 .10 .00 .10
5,6 .11 .00 .11

7,8 .12 .00 .12

9,10 .10 .00 .10

Average: .10 .00 .10

Biased 'Sets (2 x 10 items)
Calculated

Item Bias
True
Bias Difference

1,2 .24 .39 -.15
3,4 .25 .45 -.20
5,6 .23 .45 -.23
7,8 .18 .41 -.23
9,10 .10 .27 -.17

Average: .20 .39 -.19

Unbiased Sets (2 x 10 items)

1,2 .15 .00 .15
3,4 .20 .00 .20
5,6 .23 .00 .23
7,8 .23 .00 .23
9,10 .17 .00 .17

Average: .20 .00 .20

75% Bias 100% Bias

Biased Set (3 x 10 items)
Calculated True

Item Bias Bias Difference

1,2 .13 .39 -.26
3,4 .13 .45 -.32
5,6 .11 .45 -.34
7,8 .09 .41 -.32
9,10 .05 .27 -.23

Average: .10 .39 -.29

Unbiased Set (10 items)

1,2 .26 .00 .26
3,4 .32 .00 .32
5,6 .34 .00 .34
7,8 .32 .00 .32
9,10 .23 .00 .23

Average: .29 .00 .29

Biased Sets (2 x 10 items)
Calculated

Item Bias
True
Bias Difference

1,2 00 .39 -.39
3,4 .00 .45 -.45
5,6 .00 .45 -.45
7,8 .00 .41 -.41
9,10 .00 .27 -.27

Average: .00 .39 -.39
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TABLE 2

Wording for Eight Posttest Algebra Core Items

1. If 5x + 4 = 4x - 31,
then x is equal to

A -35

B -27

C 3

D 27

E 35

2 . If P = LW and if P = 12
and L = 3, then W is equal to

A 3/4
B 3

6. A shopkeeper has x kg
of tea in stock. He

sells 15 kg and then
receives a new lot
weighing 2y kg. What
weight of tea does he
now have?

A x - 15 2y
B x + 15 + 2y
C x 15 + 2y
D x + 15 2y

E None of these

C 4 7. The table below compares
D 12 the height from which a
E 36 ball is dropped (d) and

the height to which it
3. (-2) x (-3) is equal to bounces (b).

A -6
B -5

C -1

D 5

E 6

4. If 4x/12 = 0, then x is equal to

A 0

B 3

C 8

D 12

E 16

5. The air temperature at
foot of a mountain
is 31 degrees. On top
of the mountain ..he
temperature is -7
degrees. How much
warmer is the air at
the foot of the mountain?

A -38 cegrees
B -24 degrees
C 7 degrees
D 24 degrees
E 38 degrees

d 50 80 100 150

b 25 40 50 75

Which formula describes
this relationship?

A b = d2

B b = 2d
C b = d/2
D b = d + 25
E b = d 25

8. The sentence "a number x
decreased by 6 is less than
12" can be written as the
inequality

A x 6 > 12
B x - 6 > 12
C x- 6< 12
D 6 x > 12
E 6 x < 12



TABLE 3

Item Bias Values for Various SIMS Models

Item Traditional New

Model I Model II Model III

OTL Class OTL Class

1 .06 .06 .06 .06 .15

2 .17 .12 .17 .12 .11

3 .13 .1e .13 .17 .30

1 .26 .19 .25 .18 .13

5 .19 .20 .22 .21 .02

6 .23 .22 .22 .22 .01

7 .22 .18 .23 .18 .01

8 .21 .25 .21 .24 .03
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TABLE 4

Estimates from Model III

Measurement Parameters

Item T

Est. 1-ratio Est.

A

t-ratio Est.

A

t-ratio

1 1.45 22.31 0.77 17.50 0.33 6.22

2 0.07 0.97 0.86 23.43 0.22 3.72

3 0.93 10.79 1.00 0.00 0.64 8.93

4 0.66 9.51 0.86 23.19 0.28 5.46

5 0.52 6.41 0.85 22.93 -0.03 -0.49

6 0.31 4.78 0.94 24.36 -0.03 -0.65

7 0.60 11.53 0.67 18.04 -0.02 -0.38

8 0.23 3.87 0.80 21.08 0.05 1.12

r iii

x variable Est. t-ratio Est. t-ratio

0.43 18.18

1 0.20 6.09

2 -0.15 -3.28

3 -0.01 -0.22

4 0.03 0.72

5 0.13 2.22

6 0.23 7.41

7 0.17 6.12

8 0.33 9.28
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